27 research outputs found

    Adaptive capacity in social–ecological systems: a framework for addressing bark beetle disturbances in natural resource management

    Get PDF
    The ability of natural resource agencies to act before, during, and after outbreaks of conifer bark beetles (Coleoptera: Curculionidae) is important to ensure the continued provision of ecosystem services. Adaptive capacity refers to the capability of an agent or system to adapt to change, regardless of whether it is examined as an independent social or ecological entity, or as a coupled social–ecological system. Understanding the components of a disturbance and the associated effects to ecosystem services, social systems, and natural resource management increases the ability to adapt to change and ensure continued resilience. This paper presents a definition and conceptual framework of adaptive capacity relevant to bark beetle disturbances that was developed through an interdisciplinary workshop held in 2016. The intent is to assist natural resource managers and policy-makers in identifying important adaptation characteristics to effectively address bark beetle disturbances. The current state of knowledge regarding institutional, social, and environmental factors that influence adaptive capacity are identified. The mountain pine beetle (Dendroctonus ponderosae) in the western USA is used as a specific example to discuss several factors that influence adaptive capacity for increasing resilience. We hope that our proposed framework serves as a model for future collaborations among both social and physical scientists and land managers to better address landscape-level disturbances that are being exacerbated by climate change

    Low Prevalence of Conjunctival Infection with Chlamydia trachomatis in a Treatment-NaĂŻve Trachoma-Endemic Region of the Solomon Islands

    Get PDF
    Trachoma is endemic in several Pacific Island states. Recent surveys across the Solomon Islands indicated that whilst trachomatous inflammation-follicular (TF) was present at levels warranting intervention, the prevalence of trachomatous trichiasis (TT) was low. We set out to determine the relationship between chlamydial infection and trachoma in this population. We conducted a population-based trachoma prevalence survey of 3674 individuals from two Solomon Islands provinces. Participants were examined for clinical signs of trachoma. Conjunctival swabs were collected from all children aged 1-9 years. We tested swabs for Chlamydia trachomatis (Ct) DNA using droplet digital PCR. Chlamydial DNA from positive swabs was enriched and sequenced for use in phylogenetic analysis. We observed a moderate prevalence of TF in children aged 1-9 years (n = 296/1135, 26.1%) but low prevalence of trachomatous inflammation-intense (TI) (n = 2/1135, 0.2%) and current Ct infection (n = 13/1002, 1.3%) in children aged 1-9 years, and TT in those aged 15+ years (n = 2/2061, 0.1%). Ten of 13 (76.9%) cases of infection were in persons with TF or TI (p = 0.0005). Sequence analysis of the Ct-positive samples yielded 5/13 (38%) complete (>95% coverage of reference) genome sequences, and 8/13 complete plasmid sequences. Complete sequences all aligned most closely to ocular serovar reference strains. The low prevalence of TT, TI and Ct infection that we observed are incongruent with the high proportion of children exhibiting signs of TF. TF is present at levels that apparently warrant intervention, but the scarcity of other signs of trachoma indicates the phenotype is mild and may not pose a significant public health threat. Our data suggest that, whilst conjunctival Ct infection appears to be present in the region, it is present at levels that are unlikely to be the dominant driving force for TF in the population. This could be one reason for the low prevalence of TT observed during the study

    Three-way interaction among plants, bacteria, and coleopteran insects

    Get PDF

    Odonata of Canada

    Get PDF
    Since Corbet’s thorough 1979 overview of Canadian Odonata, hundreds of regional works on taxonomy, faunistics, distribution, life history, ecology and behaviour have been written. Canada records 214 species of Odonata, an increase of 20 since the 1979 assessment. Estimates of unrecorded species are small; this reflects the well-known nature of the fauna. A major impetus for surveys and analyses of the status of species is the work of the Committee on the Status of Endangered Wildlife in Canada which provides a scientifically sound classification of wildlife species potentially at risk. As of 2017, six species have been designated “Endangered” and two “Special Concern” (only five of which are officially listed under the Federal Species at Risk Act (SARA)). The Order provides a good example of molecular barcoding effort in insects, as many well-accepted morphological species in Canada have been barcoded to some degree. However, more barcoding of accurately identified specimens of many species is still required, especially in most of the larger families, which have less than 70% of their species barcoded. Corbet noted that the larvae of 15 Canadian species were unknown, but almost all larvae are now well, or cursorily, described. Extensive surveys have greatly improved our understanding of species’ geographical distributions, habitat requirements and conservation status but more research is required to better define occurrence, abundance and biological details for almost all species
    corecore